40 research outputs found

    Computational aspects of the optimal transit path problem

    Get PDF
    In this paper we present a novel method for short term forecast of time series based on Knot-Optimizing Spline Networks (KOSNETS). The time series is first approximated by a nonlinear recurrent system. The resulting recurrent system is then approximated by feedforward B-spline networks, yielding a nonlinear optimization problem. In this optimization problem, both the knot points and the coefficients of the B-splines are decision variables so that the solution to the problem has both optimal coefficients and partition points. To demonstrate the usefulness and accuracy of the method, numerical simulations and tests using various model and real time series are performed. The numerical simulation results are compared with those from a well-known regression method, MARS. The comparison shows that our method outperforms MARS for nonlinear problems

    Optimal Sensor Scheduling in Continuous Time

    Get PDF

    A computational algorithm for a class of non-smooth optimal control problems arising in aquaculture operations

    Get PDF
    This paper introduces a computational approach for solving non-linear optimal control problems in which the objective function is a discontinuous function of the state. We illustrate this approach using a dynamic model of shrimp farming in which shrimp are harvested at several intermediate times during the production cycle. The problem is to choose the optimal harvesting times and corresponding optimal harvesting fractions (the percentage of shrimp stock extracted) to maximize total revenue. The main difficulty with this problem is that the selling price of shrimp is modelled as a piecewise constant function of the average shrimp weight and thus the revenue function is discontinuous. By performing a time-scaling transformation and introducing a set of auxiliary binary variables, we convert the shrimp harvesting problem into an equivalent optimization problem that has a smooth objective function. We then use an exact penalty method to solve this equivalent problem. We conclude the paper with a numerical example

    A new approach for modelling insolation from the space perspective

    Get PDF
    In the current project we have developed a novel insolation model which allows users to incorporate the impact of space activity (solar flares, galactic radiation) on the Earth’s climate. The incoming radiation was modelled as a flux passing through a cross-section (latitudinal belt), and the changes of light throughout the year were represented by an ellipse with changing parameters. This approach has allowed us to get the results for any latitude at any particular time. Obtained results indicate an average accuracy of 97% with only a few percent less for polar regions

    Dynamic optimization of dual-mode hybrid systems with state-dependent switching conditions

    Get PDF
    This paper presents a computational approach for optimizing a class of hybrid systems in which the state dynamics switch between two distinct modes. The times at which the mode transitions occur cannot be specified directly, but are instead governed by a state-dependent switching condition. The control variables, which should be chosen optimally by the system designer, consist of a set of continuous-time input signals. By introducing an auxiliary binary-valued control function to represent the system's current mode, we show that any dual-mode hybrid system with state-dependent switching conditions can be transformed into a standard dynamic system subject to path constraints. We then develop a computational algorithm, based on control parameterization, the time-scaling transformation, and an exact penalty method, for determining the optimal piecewise constant input signals for the original hybrid system. A numerical example on cancer chemotherapy is included to demonstrate the effectiveness of the proposed algorithm

    Optimal design of all-pass variable fractional-delay digital filters

    Get PDF
    This paper presents a computational method for the optimal design of all-pass variable fractional-delay (VFD) filters aiming to minimize the squared error of the fractional group delay subject to a low level of squared error in the phase response. The constrained optimization problem thus formulated is converted to an unconstrained least-squares (LS) optimization problem which is highly nonlinear. However, it can be approximated by a linear LS optimization problem which in turn simply requires the solution of a linear system. The proposed method can efficiently minimize the total error energy of the fractional group delay while maintaining constraints on the level of the error energy of the phase response. To make the error distribution as flat as possible, a weighted LS (WLS) design method is also developed. An error weighting function is obtained according to the solution of the previous constrained LS design. The maximum peak error is then further reduced by an iterative updating of the error weighting function. Numerical examples are included in order to compare the performance of the filters designed using the proposed methods with those designed by several existing methods

    Robust Suboptimal Control of Nonlinear Systems

    Get PDF
    In this paper, we consider a nonlinear dynamic system with uncertain parameters. Our goal is to choose a control function for this system that balances two competing objectives: (i) the system should operate efficiently; and (ii) the system's performance should be robust with respect to changes in the uncertain parameters. With this in mind, we introduce an optimal control problem with a cost function penalizing both the system cost (a function of the final state reached by the system) and the system sensitivity (the derivative of the system cost with respect to the uncertain parameters). We then show that the system sensitivity can be computed by solving an auxiliary initial value problem. This result allows one to convert the optimal control problem into a standard Mayer problem, which can be solved directly using conventional techniques. We illustrate this approach by solving two example problems using the software MISER3

    A smoothing approach for semi-infinite programming with projected Newton-type algorithm

    Get PDF

    Optimal control of piecewise affine systems with piecewise affine state feedback

    Get PDF
    corecore